(9x^2-7x-1)/(12x^2-1)

Simple and best practice solution for (9x^2-7x-1)/(12x^2-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (9x^2-7x-1)/(12x^2-1) equation:


D( x )

12*x^2-1 = 0

12*x^2-1 = 0

12*x^2-1 = 0

12*x^2 = 1 // : 12

x^2 = 1/12

x^2 = 1/12 // ^ 1/2

abs(x) = (1/12)^(1/2)

x = (1/12)^(1/2) or x = -(1/12)^(1/2)

x in (-oo:-(1/12)^(1/2)) U (-(1/12)^(1/2):(1/12)^(1/2)) U ((1/12)^(1/2):+oo)

(9*x^2-(7*x)-1)/(12*x^2-1) = 0

(9*x^2-7*x-1)/(12*x^2-1) = 0

9*x^2-7*x-1 = 0

9*x^2-7*x-1 = 0

DELTA = (-7)^2-(-1*4*9)

DELTA = 85

DELTA > 0

x = (85^(1/2)+7)/(2*9) or x = (7-85^(1/2))/(2*9)

x = (85^(1/2)+7)/18 or x = (7-85^(1/2))/18

(x-((7-85^(1/2))/18))*(x-((85^(1/2)+7)/18)) = 0

((x-((7-85^(1/2))/18))*(x-((85^(1/2)+7)/18)))/(12*x^2-1) = 0

( x-((7-85^(1/2))/18) )

x-((7-85^(1/2))/18) = 0 // + (7-85^(1/2))/18

x = (7-85^(1/2))/18

( x-((85^(1/2)+7)/18) )

x-((85^(1/2)+7)/18) = 0 // + (85^(1/2)+7)/18

x = (85^(1/2)+7)/18

x in { (7-85^(1/2))/18, (85^(1/2)+7)/18 }

See similar equations:

| 4x+2+7x-19=34 | | 96=15-x | | 6v^2-13v-5=0 | | 51+3x=-5x+75 | | k^2+14k+50=0 | | log(3x+1)=logx | | 10x-2y=82 | | sin^2-1=0 | | 51+3x=-5+75 | | 15x+20y=24 | | x+x+8+x+8+8-6=28 | | 1/3(25)^2(8) | | 10=m+5+m | | -5x^3-5x^2+10x=0 | | 6(k+2)=-2(4k-5) | | ln(3x+1)=lnx | | 9-90= | | 7n^2-14n+7=0 | | 2n+5n+3=0 | | .25x-.75x=3-.5x | | 1+0.8x=0.85(1+x) | | (81/169)1/2 | | -6x^2=294 | | 3(m+2)+4(x+3)= | | 8.8x+5.7y-3.7=0 | | (-4x^2+10)-(6x^2-9)=0 | | 1/11*1/11*1/11*1/11 | | 2(6-15)=n-6 | | -1x+30=60+-7x | | 15+(-30)+2x+35x-10x= | | 4m^2-8m-20=0 | | x^2+7k+12=0 |

Equations solver categories